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Abstract

A three-dimensional (3D) transient dynamic problem within Biot’s coupled thermoelastic theory is studied in this
paper. It involves a half-space acted upon by a thermal and mechanical buried point source. It is assumed that the half-
space behaves like a coupled thermoelastic solid, whereas the loading consists of a concentrated heat flux (thermal
source) and a concentrated force (mechanical source) of arbitrary direction with respect to the half-space surface. Both
thermal and mechanical sources are situated at the same point in the interior of the half-space. The problem aims at
modeling both underground explosions and impulsively applied heat loadings near a boundary. In addition, the present
solution provides the necessary Green’s function which can be employed in the boundary element method for numerical
treatment of more complicated transient thermoelastodynamic problems involving half-space geometries (e.g. domains
with openings or contact problems). The situation studied here is the 3D analogue of a recent plane-strain problem
considered by Georgiadis et al. (1999a). It can also be viewed as a generalization of the classical buried-force elasto-
dynamic problem of Pekeris (1955) in the sense that more complicated material behavior and loading are considered.
The associated initial/boundary value problem is treated via unilateral and double bilateral Laplace transforms, which
suppress, respectively, the time variable and two of the space variables. A 12 x 12 system of linear equations arises in
the multiple transform domain and its exact solution is obtained by employing MATHEMATICA™. From this solution,
results for the vertical displacement at the surface due to a buried thermal source are obtained through numerical wave
number integrations and numerical unilateral Laplace-transform inversions. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The present work is a sequel of a recent study by Georgiadis et al. (1999a) considering the transient
thermoelastodynamic disturbances produced in a linear coupled thermoelastic half-plane under the
action of a buried /ine thermal/mechanical source (plane-strain problem). Here, the corresponding
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Fig. 1. 3-D thermoelastic half-space under the action of buried thermal and mechanical point sources.

three-dimensional (3D) problem is treated. The thermal point-source is a concentrated heat flux and the
mechanical point-source is a force with different horizontal and vertical components (Fig. 1). Both sources
are situated at the same location in a fixed distance from the surface of the half-space and may have an
arbitrary time dependence. The present problem and its plane-strain version studied earlier (Georgiadis
et al. 1999a) have relevance to: (i) the case of underground nuclear explosions (Bullen and Bolt, 1987), (ii)
the case of sudden heat radiation due to accidents involving nuclear waste buried in the ground, (iii) the
case of sudden heat loadings by impulsive electromagnetic radiation (Morland, 1968; Hegemier and Tzung,
1970; Sve and Miklowitz, 1973; Bechtel, 1975; Hetnarski and Ignaczak, 1994; Hata, 1995), and (iv) the
boundary element method as fundamental solutions (see corresponding formulations and problems in
thermoelastic full spaces Predeleanu, 1987; Fleurier and Predeleanu, 1987; Sharp and Crouch, 1987;
Manolis and Beskos, 1989, 1990; Wang and Dhaliwal, 1993).

It should be noted, however, that the previous studies concerning sudden heat loadings model the
problem as a one-dimensional or employ uncoupled thermoelasticity. Also, the studies concerning funda-
mental solutions treat only infinite domains (i.e. full spaces) and often consider time-harmonic response. On
the contrary, the present study aims at a more realistic formulation of these problems and is therefore based
on the transient coupled thermoelastodynamic theory, while it treats a 3D problem in a half-space domain.

Regarding the relevance of the constitutive theory (Biot, 1956; Chadwick, 1960; Carlson, 1972) to the
present problem, we notice that in thermal-shock problems, the importance of inertia (dynamic) effects was
revealed in the studies of Sternberg and Chakravorty (1959a,b) and the importance of both inertia and
thermal-coupling effects in the studies of Hetnarski (1961), Boley and Tolins (1962), and Francis (1972).

Now, the problem of a buried mechanical source in an elastic half-plane or half-space (no thermal ef-
fects) has a long and interesting history for the areas of wave propagation and Geodynamics. Important
contributions were made by Pekeris (1955), Garvin (1956), Pekeris and Lifson (1957), Aggarwal and Ablow
(1967), Payton (1968, 1983), Johnson (1974), and Tsai and Ma (1991). This problem, apart from other
applications, can be used in modeling earthquake activity (Burridge and Knopoff, 1964).

In the present study, we deal with a related but more general problem than those of Pekeris and Johnson
since a more complex constitutive theory (Biot’s theory) than classical elasticity is employed and thermal
loading is considered as well. Within the same context (i.e. transient coupled thermoelastodynamics), recent
efforts dealing with crack and moving load problems are due to Atkinson and Craster (1992), Chen and Kuo
(1994), Brock (1995, 1997), Brock et al. (1996, 1997), and Georgiadis et al. (1998), among others. In our
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work, the resulting system of coupled hyperbolic and parabolic PDEs and the pertinent initial and
boundary conditions are attacked with unilateral and multiple bilateral Laplace transforms. To deal with
the source terms without considering them in the field equations, we follow a procedure introduced by
Pekeris (1955) and also employed by Payton (1983), Vardoulakis and Harnpattanapanich (1986), and
Georgiadis et al. (1999a). This procedure separates the half-space into two regions (a half-space region
extending below the horizontal source plane and a strip-like region extending between the source plane and
the surface plane of the original half-space) with different representations of multiple transformed dis-
placements, stresses and temperature. Then, the exact transformed solution is obtained by considering the
appropriate continuity and discontinuity conditions along the source plane. The resulting 12 x 12 system of
linear equations has also to be solved exactly (in symbolic form) in the multiple transform domain, and this
was made possible through the use of MATHEMATICA ™. Explicit numerical results for the vertical surface
displacement are given here in the case of a thermal loading. The numerical problem of transform inversions
is particularly challenging since integrals of rapidly oscillatory functions over semi-infinite interval (wave
number integrals — see e.g. Xu and Mal (1985), Mal and Lih (1992) and Lih and Mal (1992)) are involved
along with unilateral Laplace-transform inversion. To deal with this, a strategy similar to the one in
Georgiadis et al. (1999a) was followed. More specifically, for the oscillatory integrands, which in addition
may take very large values (pseudo-pole behavior) at certain points, we follow the concept of Longman’s
(1956) method but using as accelerator in the summation procedure a modified epsilon algorithm instead of
the standard Euler’s transformation. Also, an adaptive procedure using the Gauss 80-point rule is employed
to integrate in the vicinity of the pseudo-pole. The numerical Laplace-transform inversion is carried out
through the robust Fourier-series technique of Crump (1976).

2. Problem statement

Consider a 3D body in the form of a half-space z > —H (Fig. 1) governed by coupled thermoelasticity.
The body is initially at rest and at uniform temperature. At time ¢ = 0, thermal and mechanical sources
both start acting at the point (x = 0, y = 0, z = 0), which is taken as the origin of the Cartesian coordinate
system xyz and is situated at a depth H below the surface. The concentrated thermal loading has a time
dependence g,(¢) and an intensity KO, where K is the thermal conductivity with dimensions of (power) (unit
length)™! (°C)~!, °C means degrees of temperature and Q is a multiplier expressed in (°C) (unit length)
(dimensions of go(7))~'. The concentrated mechanical loading has a vertical component Pgp(¢), and hori-
zontal components Sgs(7) and Rgr(z), where gp(t), gs(¢) and gg(#) denote time dependencies. Here, the
intensities P, S and R are expressed in (force) (dimensions of g;(¢))~!, with (j = P,S,R). Finally, all time
dependencies g, (¢), with (k = Q, P, S, R), may be arbitrary functions but of bounded variation as t — oc; the
latter being an assumption which secures that these functions are amenable to unilateral Laplace trans-
formation. Then, according to the linear isotropic coupled thermoelastodynamic theory of Biot (1956) (see
also e.g. Carlson, 1972), the governing equations for this problem are written as

6 = u(Vau+uV) + AV - u)1 — xo(3% + 20)001, (1)

g =KV, 2

WVu+ (G4 W)V (Y - 1) = 160(34 + 20) V0 + £6(x)3(3)3(2) = p%, (3)
AV - w)

K20~ pe, 0 — k(3 + 20Ty + KQgo(t) 0(x) () 5() = 0, 4)

ot
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where Eq. (1) is the Neumann-Duhamel relation, Eq. (2) is the heat conduction equation, Eq. (3) is the
displacement-temperature equation of motion, and Eq. (4) is the coupled heat equation. Also, in the above
equations, o is the stress tensor; u, the displacement vector; § = T — Ty, the change in temperature; 7, the
current temperature; 7p, the initial temperature; ¢, the heat—flux vector whose components have dimensions
of (power) (unit area)~!; (4 and u), the Lame constants; i, the coefficient of linear expansion expressed in
(°O)~!; p, the mass den51ty, ¢,, the specific heat at constant deformation expressed in (energy) (unit mass)™!
(°C)7"; f, a vector having Sgs(¢) as its x-component, Rgx(¢) as its y-component and Pgp(¢) as its z-com-
ponent; d( ) denotes the Dirac delta distribution with dimensions ( )~'; 1, the identity tensor; V, the
gradient operator; and V? = (8%/0x?) + (0%/0)?) + (0*/0z%) is the Laplace operator. All field quantities
above are functions of (x,y,z,¢).
In addition, zero initial conditions are taken, i.e.

u=0u/ot=0=0 fort<0 in(—oo<x<oo, —0<y<oo, —H<z<), (5)

and we also assume that the half-space surface z = —H is traction free and insulated (i.e. no heat is con-
ducted through the half-space surface and air). Finally, the pertinent finiteness conditions at remote regions
(Ignaczak and Nowacki, 1962) state that the field at infinity remains bounded although temperature signals
travel — according to Biot’s theory — at an infinite speed,

Next, by following the method of Pekeris (1955), we introduce an imaginary plane along (z = 0) sep-
arating the original half-space into the half-space (0 < z < oo) (region 1 in Fig. 1) and the strip (—H <z <
0) (region 2 in Fig. 1), and consider pertinent continuity and discontinuity conditions at z = 0 along with
the standard boundary conditions at z = —H:

te1 (%,2,0,8) = u2(x,,0,¢), (6a)
1 (x,,0,8) = un(x,,0,1), (6b)
w1 (x,9,0,8) = un(x,y,0,1), (6¢)
01(x,»,0,t) = 05(x,,0,1), (6d)
01 (%, 9,0,1) — 0:2(x, ,0, 1) = Pgp(1)6(x)d(y), (6e)
01 (x,,0,1) = 620(x,,0,1) = Sgs(£)6(x)5 (), (6f)
021 (x,,0,1) — 020(x, ,0,7) = Rgr(1)6(x)5(y), (62)
D200 LD oo, 15()000), (6h)
0=(x,y, = H,1) = 0(x,y, = H,1) = 02(x,y, = H,1) = 0, (7a)
00(x,y, —H, 1) _ 0. (7b)
0z

where —oco < x < 00, —00 < y < 00, and the subscript 1 or 2 in a field quantity means that the plane z = 0 is
approached as z — 07 or z — 07, respectively. It is apparent now that introducing Eq. (6) allows to for-
mulate the initial/boundary value problem without the explicit consideration of the source terms
S0(x)0(y)d(z) and KQgp()d(x)d(»)d(z) in the field Eqgs. (3) and (4), respectively, and therefore, leads to a
considerable reduction of algebraic manipulations.
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In this way, the original problem (1)-(5) and (7a) and (7b) can alternatively be described by Egs. (1), (2),
(5)—(7a) and (7b) along with the following field equations (the latter being with no source terms):

az
Vi ('’ = 1)VA+1V0 - =5 =0, 8)
Kogrgo 0, £04
m? hm? 6s+h as_o’ ©)

where Eqgs. (8) and (9) follow directly from Egs. (3) and (4) by introducing the shear-wave velocity V5 =
(n/ p)l/ 2, the dilatation 4 = V - u, the normalized time s = V7, the normalized coefficient of linear expan-
sion K = —ro(34 + 2u) /1 = Ko(4 — 3m?) < 0, the dimensionless coupling coefficient ¢ = (T;/c,)(kVa/m)’,
and the thermoelastic characteristic length # = (KV/umc,). Here, we also define m =V;/V, > 1 and
n=[2A+2p/ p]l/ * and it is of notice that the quantity ¥; is the longitudinal wave velocity in the absence
of thermal effects (i.e. in the purely elastic theory). As regards the range of numerical values for the coupling
coefficient and the thermoelastic length measured in several engineering materials, generally these are of the
orders ¢ = O(1072) and # = O(107!%) m (Chadwick, 1960).

Finally, for convenience in the subsequent analysis, the largely arbitrary functions of time dependence of
the sources g (¢), with (k = O, P, S, R), are replaced by the Dirac J(¢) and, therefore, any response due to a
general time dependence of the loading is obtainable from the present solution through convolution.
Moreover, when the double transformed solution corresponding to the J(¢) loading is found below, we shall
identify the pertinent alterations needed to provide the solution due to an arbitrary g,(¢) loading.

3. Integral-transform analysis

The dependence of the problem on the variables (x,y,s) is suppressed through the use of multiple
Laplace transforms. The unilateral transform is defined as

O pzp) = [ plrzends (10a)
0
olry.z5) = (1/200) [ @x.3,2p)e" dp (10b)
I
whereas the double bilateral transform as
" (q,w,z,p) = / /  B(x,y,2,p)e M) dxdy, (11a)
oxyzp) = (p/2r) [ [ @gmzpe e dga, (11b)
Iy JI'y

where for the unilateral direct transform, we save a capital letter and the double bilateral direct transform is
denoted by an asterisk. We also notice that (van der Pol and Bremmer, 1950): (1) Because of the identity
theorem for analytic functions, it is sufficient to view ®(x, y, z, p) as a function of a real variable p over some
segment of the real axis in the half-plane of analyticity. Once @(x,y,z,p) is determined as an explicit
function of p in the course of solving the transformed differential equations, its definition can be extended to
the whole complex p-plane, except for isolated singular points, through analytic continuation. (2) The
variables ¢ and w are complex. (3) The integration path I';, with (j=1,2,3), is a line parallel to the
imaginary axis in the associated transform plane and lies within the region of analyticity.
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Applying now Egs. (10a) and (11a) to the governing equations (1), (8) and (9), and considering Eq. (5)
yields the following general expressions for the transformed temperature change, displacements and stresses
(some details of the procedure are given in Appendix A). These representations are, of course, different in
regions 1 and 2.

(a) Region 1 (0<z< 0):

2O rmM, M. 0 0 00 0 0
ng* ¢ —¢ 1 0 00 0 0|[xer]
Py —w  —w 0 1 00 0 0f|xer=
pU: ar a5 % 000 0 xerr
wlw —2gw  —2qw w g 0 0 0 Of] xyet {
ie | T 2a 2qa % %0 000 o | (12)
Tt dwa, 2wa. M -3 0 0 0 0 0
iz; Tlv* Tlv’ 2q 0 0 000 0
o Ty T, 0 2w 00 0 O|L O |
1y | —T - —2¢ 2w 0 0 O O]
T
(b) Region 2 (—H <z<0):
#U‘?* T M. M. M. M. 0 0 0 0 7
i -4 —¢ —q¢ —q¢ 1 0 1 0 | xerm]
pU}; —w —w —w —w 0 1 0 1 Xge P+
fzi B T A Xqer
plw || “2qw 2w 2w 2w w o ¢ W g || Xe P 3
E x | | —2qa. 2qa, —2qa_ 2qa_ % _l’;" ’ﬁT % Xoe?t | (13)
R —2wa, 2wa. —2wa_ 2wa. ! % 7 %" Xyoer
i T, T, T, T, 2 0 2 0 ||Xue?¥
= xx wt wt w w q q 11
Ly* T, T, T, T, 0 2w 0 2w |[Xne?” ]
neoyy
1y L —-T -T -T -T -2q 2w —-2q —2w]
Lp™z ]

where (U7, U;,U;) and (27,,27,...,2.) are the multiply transformed components of, respectively, the
displacement vector and the stress tensor. We should also notice that solution (12) is bounded at z — oo
appropriately satisfying thus the finiteness conditions, whereas such constraints need not be imposed on
solution (13). In the above equations, the yet unknown X, X, ..., X, are arbitrary functions of (¢, w, p)
which will be determined from conditions (6a)-(6h) and (7a) and (7b) in our particular problem. The
representation (12) is identical with Eq. (54) in Brock et al. (1996) but Eq. (13) appears for the first time.

Also, the following definitions were employed:

oy = (m2i o W2>1/2’ p= (m2 . — W2)1/27 (14a,b)
) 1/2 ) 1/2
1 1 e 1 1 &
my == l+— | +— + - l—— | +— , 15
+ 2 ( (hp)1/2> hp 2 ( (hp)1/2> hp ( )
Mi = mi - 1, (16)

T =28 —m* =m?> = 2(¢* +w?), T. =2d> — m?, (17a,b)
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i Im(2)
+IBl

S .
+IBI

Fig. 2. The cut complex {-plane for the function f({) = (n12 - CZ) "2 Similar branch cuts, emanating from the points my (p), are also
2

o

introduced to render the functions a. () = (m2 — () ? single valued.

Tqi = T:t +2027 ij: = Tj: + sza (183, b)

T,=T+¢, T, =T +w. (19a,b)

Further, a new complex variable { is defined through (* = ¢* + w?, allowing the introduction of pertinent
branch cuts in the (-plane for the functions ay = a.({,p) = (m% — )" and B = ) = (m* — *)'* as Fig.
2 depicts for the representative case of S({) (i.e. outwards with respect to the origin { = 0). In this way,
Re(a, f) > 0 in the cut plane. Also, in view of the definitions for m, and m, the following inequalities can
be proven:

m*(1+¢)— 1

m_<mg<m for hp > m7 (203)
m* (1 +¢)—1

m_<m<my for hp < m, (20b)

whereas Brock (1995) provides the following approximate forms which considerably simplify unilateral
Laplace transform inversions:

N
~] _ for -« 1 21
my , m (hp)l 7 for h<< , (21a)
1+e\"? 1 s

We notice that Egs. (20a) and (20b) are necessary but not sufficient for the validity of Egs. (21a) and (21b),
respectively. Finally, it turns out that Egs. (20a) and (21a) hold true only during a very small initial time-
interval of the process which for most materials is t < O(107'%) s. In the present study, however, infor-
mation is needed generally for longer times so we shall focus interest only on the case (20b) and employ Eq.
(21b) appropriately. Since Eq. (21b) was obtained by considering s — (1/p) and expanding in series, any
case (s/h) = 100 leads to a reasonable approximation for m..

Now, transforming via Egs. (10a) and (11a) the continuity/discontinuity conditions (6a)—(6h) (with
go(t) = gp(t) = gs(t) = gr(t) = 6(¢)) and the boundary conditions (7), in view also of the general trans-
formed solutions (12) and (13), leads to a linear algebraic system of 12 equations in the 12 unknown
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X1,X,, ..., X12. Obviously, an exact (i.e. symbolical and not numerical) solution to the system is sought here
and this was made possible by using MATHEMATICA™, version 3.0. The expressions for X, X, ..., X},
which are quite lengthy in the general case of (Q # 0, P # 0, S # 0, R # 0), are not presented in this paper
but can be found in the report by Lykotrafitis et al. (1999). Here, in Appendix B, the original system and the
solution (X;,X,..., X)) are given in the special case of (Q#0, P=S =R =0).

Having available the solution (Xi,X5,..., X)) and therefore, by Egs. (12) and (13), the general ex-
pressions for the double transformed temperature, displacements and stresses allows determining the field
quantities at any point of the original space and at any time instant through successive inversions of the type
(11b) and (10b). However, we emphasize at this point that a treatment employing the Cagniard—deHoop
technique (Flinn and Dix, 1962; deHoop, 1960) to accomplish the transform inversions in an exact manner
seems to be impossible due to the very complicated multiple transformed solution in the present problem.
In simpler buried-source problems of non-thermal type such a difficulty was not met and the Cagniard—
deHoop technique had successfully been applied (Pekeris, 1955; Garvin, 1956; Pekeris and Lifson, 1957;
Aggarwal and Ablow, 1967; Payton, 1968, 1983; Johnson, 1974; Tsai and Ma, 1991). This is fully explained
in Georgiadis et al. (1999a), so here it only suffices to note that in the thermal case, after the appropriate
contour integration involved in the Cagniard—deHoop technique, the integrand in the semi-infinite branch-
line integration is still p-dependent and, therefore, the unilateral transform inversion cannot be carried out
through the standard inspection procedure. In the aforementioned work, nevertheless, an additional as-
ymptotic argument eventually made possible the use of the Cagniard—deHoop technique but the results in
that case were valid only for long time. In the present study, we take another way and rely exclusively on
numerical analysis, by following the procedure of Georgiadis et al. (1999b), in order to accomplish the
transform inversions. Below, details of the procedure and results will be given for the special but important
case of a buried thermal source, i.e. for Q # 0 and P = § = R = 0, while we focus attention to the evalu-
ation of the vertical displacement at the surface u.(x,y,z = —H,t).

Finally, notice that if a general dependence from time of the loading functions is to be considered (i.e.
arbitrary g (¢), with k = Q, P, S, R, instead of 6(¢)), then the quantities O, P, S and R in Egs. (B.5)-(B.8) of
Appendix B should be replaced by, respectively, (Q/V1)Go(p), (P/V1)Gr(p), (S/V1)Gs(p) and (R/V1)Gr(p),
where G;(p) denote the unilateral Laplace transforms of the functions g;(s/V = 1).

4. Further elaboration of the solution and preliminary results

In view of the previous results, the multiply transformed displacement U*(q,w,z = —H,p) = U ({,z =
—H,p) for the case Q # 0 and P =S = R = 0 is given by

KOWT a,e P —q et

T

where, as before, the 1c,}(z)mplex variable { is defined through {* = ¢*> + w?, and a, = a((,p) = (’"i - §2)1/2,
B=pL) = (m*—)"" and T = m* — 2{*. We also define

D{{,p)=D=a M R, —a,M,R_, (23)

(22)

where the functions
R+(Cap) = R+ = 4§2a+ﬁ + T27 R—(C;l’) = R* = 4C2afﬁ + T27 (2437 b)

can be identified as the thermoelastic counterparts of the non-thermal purely elastic transformed Rayleigh
function, which is given as (Achenbach, 1973; Freund, 1990) R, = 4{%af + T2, with a = a(()=(1- C2)'/2.
Contrary to the latter case, however, R. exhibit a p-dependence showing therefore that the thermoelastic
Rayleigh waves in the physical space/time domain are dispersive. Another point to notice is that the very
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definition of the variable { and the form of U exhibit the axisymmetric nature of the problem with Q # 0
and P =S = R =0, a fact which will become evident in the procedure that follows.

Finally, as in the plane-stress/strain case (Brock, 1995, 1997; Georgiadis et al. 1999a), by invoking the
principle of the argument (Ablowitz and Fokas, 1997) it can be shown that the two real zeros { = £{z(p)
of the function (D/a,) are the only zeros of this function in the entire {-plane. These correspond to
axisymmetric thermoelastic Rayleigh wavefronts propagating with a velocity Vz(¢) = V1/{z along the
traction-free half-space surface. Working with real p such that p > 0 (which, of course, is necessary for the
convergence of the integral defining the unilateral Laplace transform in Eq. (10a)) in the case of interest
m_ < m < my (cf. Eq. (20b)), we can obtain a closed-form expression for the root {; by utilizing factor-
ization operations (Noble, 1958; Roos, 1969; Ablowitz and Fokas, 1997) in the manner indicated by Brock
(1995, 1997, 1998). The function (D/a. ) is analytic in the {-plane cut along (m_ < |[Re({)| < my,Im({) = 0)
and behaves like —2(m? — 1)(m> —m?)(* as |{| — co. Consequently, the auxiliary function S({,p) is in-
troduced through the definition,

(D/ay)
—2(m> = 1)(m2 —m2) (= G)

which possesses the desired asymptotic property S({,p) — 1 as || — oo and, additionally, has neither zeros
nor poles. The only singularities of S are the branch points { = +m_, £m, which are shared with (D/a. ), so
it is single valued in the {-plane cut along (m_ < |[Re({)| < my,Im({) = 0). Then, the standard technique of
factorization through the use of Cauchy’s integral theorem (Noble, 1958; Roos, 1969; Ablowitz and Fokas,
1997) allows writing

S

(25)

S =5, (26)

where ST and S~ are analytic functions in the overlapping half-planes Re({) > —m_ and Re({) < m_, re-
spectively, and given as

LM la_| (M- 40| B| dow
+ _ L _ e Ll _—
S*({,p) = exp [n /m, arctan<|a+| ( 3 a ] 7B P

—|—l/m+ arctan Ja-| Aﬁ+|a |4a)2|ﬁ| ) do
T S |a] _ T4 ==

M. M
A=-——""_  B=—""*
M, —M_ M. — M

; (27)

(28a,b)

Further, one may observe from Eq. (27) that S*({ =0,p) =S ({ =0,p) and, therefore, S({ =0,p) =
[S*({ = 0,p)]>. Now, by the latter result and Egs. (25)~(27), it easily results the following explicit formula
for the root of the function (D/a.,):

m2[B+ (m_/m,)A]""

CR(p) = [2(7112 - 1)}1/25%(5 = O,p),

(29)

with the inequality m < (g < m, always to hold. One final notice pertains to the variation of the ther-
moelastic Rayleigh-wave velocity with time. Indeed, in the study of Georgiadis, Brock and Rigatos (1998) it
was shown that this velocity varies only slightly with time, a result explained in view of the fact that while
there is a strong shear contribution (which remains unaffected by thermal effects) to the Rayleigh waves, the
dilatational part of them is very weak (Viktorov, 1967).
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The foregoing inspection on the behavior of the RHS of Eq. (22) will prove, certainly, to be advanta-
geous in the inversion procedure that follows. In view of the definition (11b), one can write

~+ico
U.(x,y,z= — H,p) 2m / / “(q,w,z= — H,p)e"™ e dgdw, (30)

where U’ is given in Eq. (22). Next, axisymmetry (or radial symmetry) of the problem will become clear and
be exploited. To this end, we set ¢ = ic and w = it so that (> = ¢* + w? = —(¢%> 4 %) = —p?, and further
consider the polar coordinates (r, 0) and (p, @) defined through the relations x + iy = re'’ and ¢ + it = pe'®.
The first set of polar coordinates refers to the physical plane (x,y), whereas the second set to the transform
plane (o, 7). Considering also the case x = 0 and y > 0 (which, as will become clear soon, does not impose
any restriction to the solution), it should be Im(¢) > 0 and Im(z) > 0, whereas p = (6> + ¢ )1/ = 0. In view
of Egs. (22) and (30) and the latter considerations, one may obtain according to the relative procedure by
Bracewell (1965):

B KON, g, Te -t — g _Te tp .
U.(r,0,z= — =1 / / Dop) exp (iprp cos (¢ — 0))dopdp, (31)

or

N [™a,Te " —q Teatr [ (2 ,
il 1/ ae e [/ exp( — iprp cosg)do | pdp
0

4w D(p,p)
KO /°° a,Te - — q_Te-a+Hp
= Jo(prp)pdp, (32
w ), D(pp) olerp) )

where a;. = (m? + pz)m, B = (m?+p*)"*, T = m? + 2p* and the following property of the Bessel function

Jo( ) was used (Bracewell, 1965):

(1/20) [ exp(~iprp cos)do = i(pr), (33)

whereas eliminating the variable 0 from the problem is made possible by the observation that the inner
integral in Eq. (31) is actually independent on the starting limit of the integration interval. Finally, another
change of variable resulting from setting w = prp leads to the following expression for the unilateral
Laplace transformed vertical displacement at the surface:

KOV /OO (aje™o-fP — q_emo+HP)T
0

Uz y 2= _Ha = 5.5
(r,z P) 2n D(r,w,p) pr?

Jo(w) dw, (34)

where the symbols a., f, T take the following forms (which, of course, are compatible with the definitions
(14) and (17a) and the several changes of variable in the previous analysis) and D(r, w, p) is given in Eq. (23)
with {* being replaced by —w?/p*r

s w? \'? s w? \ 2 s >
aL = mi+p2_r'2 5 ﬁ: m +W 5 T:m +2}72—r2 (35)

In this way, the double complex integration in Eq. (30) has been avoided since it was replaced by the
single real integration in Eq. (34). Thus, before formally proceeding to the unilateral Laplace transform
inversion we have to deal with the wave number integral in Eq. (34). However, the numerical procedure
employed takes care of both operations in the same algorithm. This procedure will be presented in Section
S.

Closing this Section, the important limit case of (» — 0, H = 0) is considered. The limit for the vertical
surface displacement as the location of the surface source is approached can be obtained by the use of the
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Abel-Tauber theorem (van der Pol and Bremmer, 1950; Roos, 1969). The displacement for (r — 0, H = 0)
at z=0 may result from the transformed displacement U'({,z=0,H =0,p) for (|| — o). Indeed,
asymptotic considerations lead to the following expression:

N4 1

li * =0H = =__ =1 -

\E\T;CUZ (C7Z 07 0,p) 2(m2 _ l)pz Cz? (36)
which when inverted according to Egs. (34) and (10b) yields

. o aa KO = Jo(w)

Now, the singular integral in Eq. (37) is found to behave like [—1n(e/2)] with ¢ — +0 (by 11.1.20 of
Abramowitz and Stegun, 1982), so the displacement in question is logarithmically singular at the instant
of application of the heat loading but becomes zero after removing it. This logarithmic singularity is
compatible with the respective result of the uncoupled thermoelastostatic theory (Parkus, 1962).

5. Numerical procedure

The numerical procedure recently advanced for the classical Lamb’s problem (Georgiadis et al. 1999b) is
employed here. A brief presentation will only be given. First, the numerical unilateral Laplace-transform
inversion is effected by using the Crump (1976) method (see also for related methods in Dubner and Abate
(1968), Durbin (1976)). This method proved to be particularly successful as both survey articles (Davies and
Martin, 1979; Narayanan and Beskos, 1982; Duffy, 1993) and previous experience (Georgiadis, 1993;
Georgiadis and Rigatos, 1996) indicate. Of course, any numerical technique of this kind can provide re-
liable results only for a hounded time interval and not for the entire time domain because of the inevitable
instability of the first-kind integral equation (10a) to a numerical treatment. Nevertheless, this boundedness
requirement is not particularly restrictive if one is content to obtain results right after the application of the
loading — which is the case in the present study — and is not interested in the long time solution. But even in
the latter case, i.e. when a long time (or static) limit is sought, practically this limit occurs almost imme-
diately after the arrival of the Rayleigh wavefront in two-dimensional (2D) plane stress/strain and 3D
situations (see e.g. Freund, 1974, for the problem of a crack under concentrated loading, and Georgiadis
et al. 1999b, for Lamb’s point-load problem). Finally, it is noted that an alternative could be the spectral
method of Geubelle and Rice (1995) which was also tested, with excellent results, against the analytical
solution to Lamb’s problem.

The starting point in the Crump (1976) method is the following alternative form of Eq. (10b)

e

0(5) =% [ IRe(@(-+ i) cos hs) — Im(@(y -+ ) sin (1)) s, (39)
where p = y + 1. In this way, the complex integral in Eq. (10b) is replaced by the real integral in Eq. (38),
which offers the advantage of the application of a direct numerical scheme for its evaluation. Indeed, if the
trapezoidal rule for semi-infinite integration intervals is applied to Eq. (38) (Davis and Rabinowitz, 1984),
the following approximation of the Fourier-series type will result:

o= (5[4 Sl ) (2) o ) ()]} o

It is also noticed that Crump (1976) has presented a systematic error analysis from which ¢(s) can be
computed to a predetermined accuracy. This means that the so-called period sp and the abscissa y should be
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chosen according to this analysis (in fact, sp is taken so that 2sp > syax, Where spay is the normalized time up
to which results are to be obtained, whereas the formula for y is given below). In addition, the acceleration
of the convergence of the summation in Eq. (39) is obtained by using the modified Epsilon algorithm in-
troduced in Georgiadis et al. (1999b) (see for the original algorithm in MacDonald (1964) and Davis and
Rabinowitz (1984). This means that only the first few terms of the series need to be calculated, and these are
then utilized in a nonlinear combination to obtain very accurate results for the summation. One final notice
pertains to the fact that p in Crump’s method is allowed to be complex, a situation offering (in a numerical
Laplace-transform inversion) increased accuracy as compared with a treatment based on real p (Crump,
1976; Davies and Martin, 1979). Translated into the present case, this means that we have first to consider
the analytic continuation of our solution in Eq. (34) before its numerical inversion. This operation does not
pose any difficulty, however, because it can be shown that all poles and branch points of the function in the
integrand of Eq. (34) are situated along the imaginary axis of the complex p-plane. Therefore, the
Bromwich inversion path I'; in Eq. (10b) can be taken just slightly to the right of the line Re(p) = 0 and,
accordingly, this placement will enter through the constant y, in the following formula (Crump, 1976)
determining the abscissa y in Eqs. (38) and (39): = y, — [In(E)](2sp) ", where E is the maximum allowable
error. In our specific problem, the following choice of parameters was made E = 1078, Sp = 0.8 Smax,
% = 1073[In(E)](2sp) " and 241 terms were introduced in the Epsilon algorithm.

Obviously, in order to evaluate u,(r,z = —H,s) through Eq. (39) for each s one has first to evaluate
U.(r,z= —H,(y + ikn/sp)) through Eq. (34) for each k.

We proceed now to discuss the main cause of difficulty in numerically implementing Eq. (34). This is
related to strong oscillatory behavior of the integrand due to both the Bessel function J, and the terms
exp (—a.Hp) (notice that p is complex in the latter arguments). In numerically evaluating this integral,
therefore, we resort to Longman’s (1956) method according to which the zeros of the integrand are first
evaluated, ‘positive’ and ‘negative’ areas are then computed through the Gauss 80-point rule, and finally the
results of each separate integration are summed up with accelerated convergence provided by the modified
epsilon algorithm. As compared to the case treated in Georgiadis et al. (1999b), the present situation is
more complicated by the occurrence of additional zeros due to the terms exp(—a.Hp). This situation can
be better realized by observing the graphs of Figs. 3 and 4 obtained at a specific observation position r and
inverse time p. Indeed, we define the functions,

(a e — q_e=a+IP)T
—J 40
D(r,o,p) Pl @) 40)

f(r,o,p,H) =

(a,e™ = —q e T o

D(r,,p) P

gr,o,p,H) = (41)
and take the depth of the source # = 100 m and the following material constants: coupling coefficient
&= 0.01, thermoelastic characteristic length # = 107! m, and Poisson’s ratio v = 0.20 (a value which yields
m=V;/V, = 1.632993 ). Then, Figs. 3 and 4 show, respectively, the variation of Re f and of both Reg and
Img with w at » = 100H and p = 0.0002 + 10.00654. The graph in Fig. 4 permits also to identify the arrival
of the various wave fronts at the observation point since interference with the Bessel function J is avoided.
This figure especially depicts the arrivals of the dilatational and Rayleigh wave (the shear wave arrives just
before the Rayleigh) near w = 60 and 120, respectively. However, as the observation point moves closer to
the epicenter, the results show pronounced effects due to the dilatational wave. On the contrary, effects due
to the Rayleigh wave become more pronounced for distant observation positions. Finally, similar graphs
show that at surface points near to the epicenter, terms exp (—a.Hp) become dominant.

Other issues which merit attention are the following: (i) The peaks marking the arrival of each wave front
occur at about the same value of w, although r varies, since the normalization w = prp has been employed
and the damping (due to thermoelasticity) is very small. (ii) The particular choice of the interval of the



G. Lykotrafitis et al. | International Journal of Solids and Structures 38 (2001) 48574878 4869

2.00E-15 —
H=100m
1.00E-15 4 Fr=100H
p=0.0002+i0.00654
7 Re f(r,o,p,H)
0.00E+0 «A/\/\/\N\/V\/\JM/\N\J \/\/\Nv.;
-1.00E-15
-2.00E-15 : : : : :
0.00 40.00 80.00 120.00 160.00 200.00

()

Fig. 3. Variation of Ref with w in the case ¢ = 0.01, # = 107" m, v = 0.20, H = 100 m, » = 100H and p = 0.0002 + i0.00654.
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Fig. 4. Variation of Re g and Img with w in the case ¢ = 0.01, 2 = 107" m, v = 0.20, # = 100 m, » = 100H and p = 0.0002 + i0.00654.

normalized time in the graphs presenting our final results (for the variation of the vertical displacement at
the surface) restricts the occurrence of peaks due to wave front arrivals up to the value o = 300. Ac-
cordingly, no accelerating technique is utilized within this interval and a careful treatment of these peaks is
done in order to fully take into account the effects marking the wave front arrivals. The accelerating epsilon
algorithm is utilized, however, after the value o = 300, i.e. in the interval where pure Bessel-function os-
cillations occur. (iii) Although the Rayleigh function D(r,w,p) (which is complex-valued) is in the de-
nominator of Eq. (34), the peaks associated with the thermoelastic Rayleigh wave are not of the type of a
genuine Cauchy principal-value singularity because ReD and ImD do not vanish simultaneously for the
same value of w as long as the Bromwich path does not coincide with the Im (p) axis. Indeed, this behavior
of ReD and ImD can be observed in Fig. 5, where their variations with o are presented for the case
H =100 m, » = 100H and p = 0.0002 + i0.00654.
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Fig. 5. Variation of Re D and Im D with o in the case ¢ = 0.01, # = 1071 m, v = 0.20, H# = 100 m, » = 100H and p = 0.0002 + i0.00654.

The existence of peaks (often resembling a pole-like behavior) in the functions Re ' and Im " along with
the oscillatory behavior requires a very careful integration scheme. The adaptive technique of Georgiadis
et al. (1999b) is followed here but, as explained before, the present case is even more complicated. First, the
roots of the functions Reg and Img are found through the techniques of bracketing and bisection (Press
et al., 1987), and also the zeros of the Bessel function .J; are located (Table 9.5 of Abramowitz and Stegun
(1982) was used for the first 20 points and of the McMahon formula — see e.g. Section 9.5 of the same
source — for larger arguments). In this way, the zeros of the final functions Re /" and Im /" are obtained.
Secondly, all local maxima and minima corresponding to wave front peaks are obtained in between con-
secutive zeros of Re f and Im f. Finally, each integration interval between consecutive zeros is partitioned
in the following two ways. If a wave front-related peak occurs in a particular interval, then 12 small sub-
intervals are considered to the left and right of the peak abscissa and these become smaller and smaller as
that point is approached (Georgiadis et al. 1999b). If, however, a rather smooth variation of the integrand
occurs, then only four equal sub-intervals are considered. Throughout, the Longman (1965) procedure
along with the Gauss 80-point rule was utilized. Also, no accelerating summation technique was used for
the domain corresponding to the first 100 roots of Jy (up to this point, all wave front-related peaks have
already occurred), but the modified epsilon algorithm was then employed for the domain corresponding to
the next 71 roots.

6. Numerical results and concluding remarks

The results we have obtained are given in the form of graphs showing the time variation (history) of the
vertical displacement at the surface of the thermoelastic half-space. In these graphs, the normalized vertical
displacement u = (2mu./xQV;) and the normalized time t = [s/(#? +H2)1/ 2] are employed, whereas the
following material constants were used: coupling coefficient ¢ = 0.01, thermoelastic characteristic length
h =10"'" m, and Poisson’s ratio v = 0.20. The graphs to be presented correspond to the case # = 100 m
but a general result of our study is that the shape (profile) of the pulses remains essentially the same for the
cases H = 10 and 1 m as long as normalization is utilized. Of course, the numerical values that the dis-
placement takes on are different in each case (becoming larger for smaller depths).
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The graphs in Figs. 6 and 7 show the history of the vertical displacement for » = 40H and r = 1004,
respectively, over the entire time domain considered in the inversion process. Generally, one could observe
that, for distances near to the epicenter, the dilatational wave (arriving at the observation point at time
72 1.0) produces larger displacement than the shear and Rayleigh waves (the latter arriving at time
T = 1.7) but, for distances far from the epicenter, the Rayleigh wave becomes the dominant one. Also, Fig.
8 depicts in more detail the profile of the dilatational wave by focusing to a small time interval near T = 1.0.
The shape of this pulse reminds indeed the ‘reversal’ type of the pulses with the very steep variation ob-
served in the study of Sternberg and Chakravorty (1959b), who pointed out the importance of inertia effects
in thermal-shock problems and revealed, in fact, that such a ‘reversal’ effect at wave fronts is inherent to the
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Fig. 6. Displacement u vs. time t graph in the case ¢ = 0.01, # = 107" m, v = 0.20, # = 100 m and » = 40H. Arrivals of the dilatational
(pressure), shear and Rayleigh waves are marked with the symbols P, S and R, respectively.
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Fig. 7. Displacement u vs. time t graph in the case ¢ = 0.01, £ = 10" m, v = 0.20, # = 100 m and » = 100H. Arrivals of the dila-
tational (pressure), shear and Rayleigh waves are marked with the symbols P, S and R, respectively.
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Fig. 8. Detail of the dilatational-wave profile in the case ¢ = 0.01, /= 107" m, v = 0.20, H = 100 m and r = 80H.

dynamical theory of thermoelasticity. In fact, this type of pulses here indicates that precursor effects for the
propagation of wave fronts are to be expected within Biot’s thermoelasticity (see e.g. the relative discussion
in Achenbach, 1973).

The next graphs, i.e. those in Figs. 9 and 10 (here, again, the case H = 100 m is considered), show in
more detail the profiles of the shear and Rayleigh waves by considering times greater than the time of
arrival of the dilatational wave. In this way, the stronger (especially at observation points close to the
epicenter) dilatational disturbance does not overshadow the Rayleigh disturbance. These graphs indeed
show the generation and initial development of the thermoelastic Rayleigh wave as the observation station
moves away from the epicenter, but also show the decay in amplitude (attenuation due to the 3D geometry
of the problem) after a certain point (see for analogous non-thermal situations in Pekeris and Lifson (1957)
and Achenbach (1973)). The latter result is not encountered, certainly, in the respective 2-D problem (non-
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normalized vertical displacement

-8.00E-16 ‘ ‘ ‘ ‘ |
1.00 2.00 3.00 4.00 5.00 6.00
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Fig. 9. Rayleigh-wave disturbances in the case ¢ = 0.01, 4 = 107" m, v = 0.20, H = 100 m at two different observation stations » = 4H
and 10H.
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Fig. 10. Rayleigh-wave disturbance in the case ¢ = 0.01, # = 10"'" m, v = 0.20, H = 100 m at the observation station » = 20H.

thermal buried dilatational source) of Garvin (1956) where once the Rayleigh pulse takes its shape, it is not
decaying.

It is also of notice, in the two previous groups of graphs, that as the distance becomes greater the shape
of each disturbance appears to become sharper because of the contraction of the real time scale with the
increase of the length (r* + Hz)l/ %,

In conclusion, the 3D transient dynamic problem of a thermoelastic half-space under thermal and
mechanical buried loads is treated in this paper. This problem is relevant to model both underground
explosions and impulsively applied heat loadings near a boundary and, additionally, its solution provides
the necessary Green’s function needed in boundary element formulations of more complicated transient
thermoelastodynamic problems. Biot’s coupled thermoelasticity theory is considered and Laplace trans-
forms along with symbolic algebra are utilized to get an exact solution in the multiple transform domain.
From this solution, results for the vertical displacement at the surface due to a buried thermal source are
obtained through numerical wave number integrations and numerical unilateral Laplace-transform in-
versions.

Appendix A

Applying Egs. (10a) and (11a) to the governing equations (1), (8), and (9), in view also of conditions (5),
we obtain the following expressions for the transformed stresses:

1 1 1
=2 =pwU’ + pqU’, =2 =D(U}) + pqU7, -2 =D(U) + pwU;,
[ ! U o g

z z

%Z; =KkO" + mzqu;‘ + (m2 — 2)pwU; + (m2 — Z)D(UZ*),

1
;Z; =KkO" + (m> = 2)pqU; + mszUy* + (m* = 2)D(U),

%Z; = KkO* + (m2 - Z)qu; + (m2 - Z)pwU; + sz(UZ*),
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and the following system of linear ordinary differential equations for the transformed temperature change
and displacements:

e (Pg + P — 5+ D2() o e 2p( ) <)
Kpq (W +pm (¢ -1 +D*() prq(m* — 1w (m - 1)D() Uil Zy
Kpw P qW( m* —1) P¢ +pPm*(w* = 1)+ D*( )] pw(m —-1)D( ) U: '
kD() pg(m* = 1)D( ) pw(m* = 1)D( ) P*(@* +w —m’) +m’D*( )] ) \UZ

(A.2)
where D( ) denotes the differential operator d( )/dz.
The determinant of the coefficient matrix has the simple roots +pa, and +pa_, and also the double roots
pp and —pf. Accordingly, the general solution of Eq. (A.2) is found to be

O" = q1€” + are P + azeP' 7 + age T + ase”ﬁz + aéefpﬁz,

U: — blepa+z 4 bzefpnuz 4 b3epa,z =+ b4efpa,z 4 bsep/fz 4 béefp/fz’

(A.3)

Uy = i€ + e ™7 + e3¢ +cqe ™7 + cseP 4 cge PP

U = die"" + dye P47 + dye?™ + dye 7 + dse?’” + dge PP~
Now, elimination of some of the coefficients, say (a;,c;,d;) with (j =1,2,...,6), is obtained by a conve-
nient substitution of Eq. (A.3) in Eq. (A.2). This substitution yields a system of three linear independent
algebraic equations for each set (ay, by, cr, di), with (k= 1,2,...,4), of the coefficients of the simple roots.
Solving this system provides the coefficients (ay, ¢y, d;) as functions of b;, with (k =1,2,...,4). Finally, as

regards the coefficients of the double-root terms, an additional linearly independent algebraic equation is
provided by the first equation of the system (A.2).

Combining the results obtained through the above procedure gives the general solutions in Egs. (12) and
(13) of the main text.

Appendix B

The 12 x 12 system of Section 3 reads

1 1 1
Xi+Xo ——X3— X5 — Xg — X7 — Xg —‘y——.)(9—|——)(11:07 (Bl)
q q q
1 1 1
Xi+Xo——X4—Xs —Xg — X7 — Xg +—Xjo+—Xpp = 0, (BZ)
w w w
a_ a_ q w q
X + X2+ X 4 o Xy 4+ Xs — X+ =Xy — = Xy + L Xy + —— Xy — —— X
ﬁ at Ba. at ai Ba, Ba, Ba.
— —X =0 B.3
Pa. 2 ’ (B.3)
M_ M_ M_
Xi+—X — X5 — Xg — 7X ——X; =0, B4
1 +M+ 2 5 — K¢ 7 M, 8 (B.4)
2g 2w 2 2w 2 2w P
X +X+ X3 + X=X —Xg — X7 — Xg — —qX9 —Xi0 — —an Xy = —— (B.5)

T T T T T T uT’
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a_ T, w
Xi+—X - X5+ —X + X5 — X +1 —X; - —X8 — X+ —XIO
at 2qa+ﬂ 2“+ﬁ a ay 2qa.p 2a.p
T, w Sh
+ X — 12 = ;
2qa. f 2a.p 2puqa
il - Toxoix xS e d Ty,
a, 2a.p 2wa, f a, 2a+/3 2wa+ﬂ
q T, RV,
X, Xp =
" 2a M + 2wa. T 2uwa,’
D e L
: M.a, ? e M.a, ’ Ma, ’ _M+pa+m2’

(Te ") Xs + (TP ™) X + (Te ™ ™) X7 + (Te ™)X + (2ge ) Xy + (2we ™)X
+ (2¢e”") X11 + (2we™ ) X1, = 0,

(—2ga.e ") X5 + (2qa e™ ") Xe + ( — 2qa_e ™) X, + (2ga_e" ") X + <7;Ve—p/fH)X9

+ (—%epﬁH)Xlo"F <_%€pﬂH>X11 + (%epﬁH>X12 =0,

(—2wa, e )X + (2wa, &) Xs + (= 2wa_e ™)X + (2wa_e” ) X

T T,
+ ( - %GP[;H)Xg + (qu”ﬁH)Xlo + (%eﬂ]ﬁ]{))ﬁl + ( - qupﬁH>X12 =0,

(M+pa+e’p“+H)X5 — (M+pa+e””*H)X6 + (M,pa,e’p"*H))G — (M,pa,e"“*H)Xg =0,

and its solution in the specific case of (Q # 0,P =S =R =0) is given by

Xl _ _KQI/le—Za,Hp |: o (eZa,Hp o e—Z(a+—a,)Hp)a7M7TE 4 (eZaHp 4 e—Z(mr—a,)Hp

_2M_e (ay—a- Hp)a+M+TE—|— ( 2a_ Hp+e2(a+a)Hp)D:|/(BA)’
+

X2 _ KQVI{ —a ef(a++3a,)Hp |: _ ZeZa,Hp 4 ( (ay+a-)Hp + ea++3a )Hp)M
_ M+

[(— 1+ M)M,a, TE + (1 + ¢ )D] } / (40),
X5 = —2xQVi pqTe “++e-*PHr (g et — q_e* ") (T, +w?) /(FA),
X, = 2kQV; pwTe @+ ta-+HHp (a+e“*H” — a,e“*H”) (Tw + qz)/(FA)7

KON kOVi
M= i, M)~ B
+m=pl4 -

]M+TE + g -t
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(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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Xo = —xQVie” Pt f g et oM TE + a, [(e* "M, — 2e*""M_)TE] + ¢*""D/(BA)}, (B.18)
KOV
X; = % (B.19)
Xy = kQVie (@M [q_(2e M, — e "M _)TE + a,e""[M.T( — E)] + e“""D] /(CA), (B.20)
Xo = Xj0 =0, (B.21)
Xy = —2kQW fqTe™ P (—q_ + q e =) (T, + w?) /(FA), (B.22)
X = 2KkQV; pwTe @t thHr (g e 4 gq_e*") (T, + ¢*) /(FA), (B.23)
where
A= (a.M. —a M )T(T,T, — ¢W) + da.a_B(M, — M_)(¢*T, + 2¢°w* + w’T,,), (B.24)
B =2a,m*(M, — M_)p, (B.25)
C =2a m* (M, — M )p, (B.26)
D=4da.a (M, — M) (quq +24°w* + wZTw)7 (B.27)
E=T,T, — ¢w, (B.28)
F = m’p. (B.29)
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